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of the form (9) are stable with respect to the slow variable k during a time T = O (¢,
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ON THE ASYMPTOTIC STABILITY AND INSTABILITY OF THE ZEROTH SOLUTION OF
A NON-AUTONOMOUS SYSTEM

A.S. ANDREEV

A non-autonomous set of differential equations with right side satisfying
conditions for the existence of limit sets of differential equations /1, 2/
is considered. Theorems are proved on the limit behavicur of the solutions,
on the asymptotic stability and instability of the zeroth solution of such
a set in the presence of a Liapunov function with a derivative of constant
sign. On the basis of these theorems, sufficient conditions are obtained
for the asymptotic stability and instability of the zeroth equilibrium
position of a non-autonomous mechanical system. A problem is solved on

the asymptotic stabilization of a given three-axis orientation in space

for a solid with variable moments of inertia.

1. Consider the following set of differential equations
=X (Xt 0)=0) (1.1}
where x and X are real n-vectors, the function X (¢ ) is defined in the domain R* X I'(R* =

[0, +oo [ T={llz| S H<+ o}, |z] is a certain norm in R") and satisfies conditions (&)
from /1/: X (t, z} is measurable in ¢t for fixed x, and is continuous in x for fixed t; for
any compact set DI, I' two local L,-functions & {f) and bk, (#) exist such that for any r,y &I,

R"‘
and 1€ 1X¢ 1<k 1X6 =Xt )l<h®]z—y]

the function A, (f) is uniformly continuous in the mean on any segement [r, T + 1] c R* and the
function hy (f) is bounded in the norm on [r, T+ 1], i.e.

41

§m@a<m § m@ae<e

for any measurable set E (= [t, T + 1] by a measure less than p=u (e I'}) >0, and a certain
number o ==p ().

As is shown in /1/, conditions (4) guarantee the existence of solutions of {(1.1), in the
Caratheodory sense, and their uniqueness, the compactness (in weak L,-topology) of the family
of functions {X (¢, z)}, satisfying these conditions, particularly the existence of limit func-
tions ¢{f, 2} to X (4, z), the mutual continuity of the solutions of the initial system (1.1},
and the solutions of the limit systems

=9 ) (1.2)

We note that a special case of conditions (a4) is Lipschitz conditions in t and x, which

*prikl.Matem.Mekhan.,48,2,225-232,1984
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is convenient in that for these conditions the limit equations (1.2) retain the structure of
the initial equations (1.1) /2/.
We call the function /3/

Vi oy=limsup(V({E+a 24X 1))~V 2)h
A0

the derivative of the scalar function V ({, z) that satisfies locally the Lipschitz condition
in x from I uniformly in (& R*.

We will assume that the scalar non-negative function W (f, z)satisfies the Lipschitz condi-
tion in t and x on each compact [t f, -+ v] X Iy {{, >» 0, v >0, I, CT). The set of functions
o (t, z) limiting to W (f, 2) will be non-empty, and the convergence of Wy (t, 2) =W (1, + ¢, z)
to oft, ) as f,~»-4oco will be uniform in each compact mentioned.

We will say that (@, @) is the limit pair of functions if ¢ (f,2) and o (¢ ) are limit
functions, respectively, of X (¢, z) and W (¢, ) for the identical sequence {, - + oo,

2. Let Q*(z(t i %,)) denote the set of limit points of a non-continuable function
z=z (¢ t,, %,) of system (1.1).

Theorem 2.1. We assume that a function V(i z) >0 exists whose derivative is perman-
ently negative because of (l.1), V'{f, o) — W (¢, 2) < 0. For each limit pair (g, o) we let
M* ((p, ©)) be the set formed by non-continuable solutions of the system 2’ = ¢ (f, z) lying in

the set {0t 2)=0, t= R*, z<= T} in its whole interval of definition, and M,* ({{p, @}}) is

the union of M*((¢, ®)) over all (¢, ®). Then for any solutionz =z (t, t, z,)of (1.1), defined
in the interval [, + oo, the set of its limit points satisfies the relation *rnrc
M {(@ o)) |
Proof. If |z(t ty Zg) |+ © or Q' I, then the assertion is evident.
Suppose we have Q' T« and z*& Q' T for the solution z==z (4 &, z,} so that
a sequence {,—> 4 oo exists such that =z (4, f, Z,) ~» z,*. The function V()= V (L, z (¢, &, 7))
has a lower bound and decreases. Consequently, V(f)—>¢ as ¢-> 4+ . We select a subsequence
{t;} from the sequence {f,} so that X, {f, 2)=X(h + ¢t 2> ¢, (¢, 2), Wi {t, D)= W (t, + ¢, 2)~
®y (¢, ). On the basis of /1/, the sequence z,(f)==z(f +1, %, z,) will converge to P ()X
{$(0)==z,*) the solution of the system ¥ =g, (t, z), uniformly in each interval [0, «] [0, B[,
where [0, B[ is the interval of definition of % (f). From the estimate

1
Vit +8) =V () < — W (r, 22 (1)) d5 <O (2.4)
0

by passing to the limit as f — -+ oo and taking account of the uniform convergence of Wy (8, 2)
to @, (£, z), we obtain

¥
c—c<—§wo<v,~p<~c»dr<o 2.2)

Hence @, (4 $(?)) =0 for all ¢t [0, p[. Therefore, z,* & M*((py, @), on the basis of
which we conclude that Q¥ (z (1, 1, 2,)) & M {{{g, o)) -

Remark. Under the conditions of Theorem 2.1 for the non-continuable solution of (1.1)
defined in the interval [4, ylity<<+ &) the set of its limit points R*[T is contained in a
subset, invariant to system (1.1}, of the set {W( #)=0,tasR*\, z&T}, i.e., QN C M (X, W)

Therefore, for any non-continuable solution of (1.1) the relationship Qt(x(t, 1y, 2)) NT C
MU MY (X, W) is satisfied.

Theorem 2.2. Under the conditions of Theorem 2.1 each solution of system (1.1) bounded
by the domain T;={]z| < H,<H) approaches unboundedly to the connected compact subset of
the set M.* ({(g, ©)}).

The proof follows from the fact that the set of limit points of such a solution, is con-
nected, compact /3/, and contained in M,* ({(p, ©)}) on the basis of Theorem 2.1.

The theorems proved develop and extend the appropriate results in /4-8/, described in
part in /3/.;

3. Theorem 3.1. We assume that: 1) a positive-definite function Vit, 2> Vi([z]) exists
whose derivative V' (t, 2) < — W (t, 2) <0 by virtue of (1.1); 2) for any limit pair (¢, o),
the set {o(f 2) =0} does not contain solutions of the system 2= (I, 2) except z==0. Then
the zeroth solution of (l.l) is asymptotically stable with domain of attraction T () such that
sup (V (2 z) for 2T @) V, (H,) (H, < H).

i Proof. It follows from condition 1) of the theorem that z=0 is stable and the solu-
tions =2z (¢, &y, Ty), To &T () of (1.1) are bounded by the domain Uzl Hy).

Repeating the reasoning for Theorem 2.1, we find that for any solution & e=z (2, ty 2,), 2o =T (2y)
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the set of its limit points Q* (2 (¢, ly 2,)) is contained in the set P.* ({(g, ®)}), the union in
all pairs (q),. ®) of the subsets P* ((¢. ®)) C {0 (8, z) =0}, invariant relative to solutions of
the system z' =@ {f, z). But from condition 2) of the theorem P¥*{g, 0)) = {x=10}, therefore,

P ({{p, w)})) ={z=0}). This means Q*(z (L &, 2))) = {&==0}, i.e., limz(t ¢, 25)=0 as t—> 1+ oo.

Theorem 3.2. We assume that: 1) a positive-definite function V (¢, z) exists that allows
infinitesimally high limits Vi (Jz) S V(¢ 2) K Vo (] 2 ), whose derivative V' (t, 2) <l — W (¢,
z) < 0; 2) at least one limit pair (g, ®,), exists such that the set {@,(f, z) ==0} does not
contain solutions of the system 2 =@, (, z) except z=0.

Then the zeroth sclution of (l.l) is uniformly asymptotically stable in z,with domain of
attraction Dy={{z]| < H, =V, (V\(H))), H, < H}.

The proof of this theorem is a modification of the proof of Theorem 2.1 from /2/.

Theorem 3.3. We assume that: 1) a positive-definite function V (¢, z) exists that satis-
fies the Lipschitz conditions in (¢, 2) (and therefore, allowing infinitesimal high limits)

VilzDSVE <l (3.1

whose derivative V{4, 2) — W (£, 2) <0 by virtue of (1.1); 2) for any limit pair of functions

{9, w) the set {® (f, ) ==0} does not contain solutions of the system 2 == ¢ (f, 2) except
z==0, Then the zeroth solution of (1l.l) is uniformly asymptotically stable with domain of
attraction Ty={z || SH, =V, (Vy, (H)}.

Proof. It follows from condition 1) of the theorem that the zeroth solution of (1.1l) is
uniformly stable and solutions of {1.l) from T, are bounded by the domain T = {{j =i} < Hi}.

We will show that a2 =0 is a point of attraction of all the solutions of any limit system
from the domain T

Let 2= (f) (% (f,) = 29 = I'y) be the solution of the limit system ' = @o(f, ). By the
definition of @, (2, z), a sequence f, —» - o0 exists such that X, (¢ ) = X (f, + ¢, ) =@, (¢, 2).
We select a subsequence # —»-+ o, such that the subsequences V. (¢, z) = V(f + ¢, 2) and W, (¢,

z) = W {f 4 £, ) converge uniformly on each compact [t ¥, + vl X {{z{l < Hy, Hy > Hi} to A (2, 7)
and @ {?, ) respectively. By virtue of (3.1}, we have

ViflzilD<* (. 2 <Valizl) (3.2)

Consider the sequence of solutions z =z, (f) (¢ > {,) of the systems of equations z' =
X (t, z) that satisfy the initial conditions z(Z,) ==, From the convergence X, (¢, )9, (¢,
z) and the condition = (f) ==z, we have that the =z, () will converge uniformly in each interval
{5, to +v] to ¢ {8). The functions z,(f) will simultaneously be solutions of the initial system
(1.1) with the initial conditions =z (§ --t) = z,. Consequently, from condition 1) for 121

we have the estimate
t

Vit zx () = Vi (o) Zo) < — S Wy (1,2 (3))dv

0

from which, passing to the limit as f; -»-- 00, we have

t
Mot B (2)) — Mo (to, Z0) << — § 09 (7, B (1)) dT <O

Hence, also from (3.2) we conclude that the zeroth solution of the system 2z = g, (¢ )
is stable and its solutions from [, are limited to the domain Ti. The system of equations
limiting to =z’ = @, (¢ x) will be the limit also to (1.l) in the same way as functions that
are the limit to g (f, 2} will be the limit to W (¢ z} also. Hence, according to condition
2) of the theorem, if (@, @) is the limit pair to (@, @), then the set {w(?, ) = 0} does not
contain solutions of the system z’ = @, {(f, z)except:z = (0. On the basis of Theorem 3.1 we conclude that
the zeroth solution of the systemz = g, (¢, Z)is asymptotically stable with domain of attraction }
The uniform stability of the zeroth solution of (1.1) and the fact that Ty is the domain
of attraction of the point z =0 of solutions of any limit system (1.2) imply the uniform
asymptotic stability of the zeroth solution of (l.1) with the domain of attraction T, /8/.

Theorem 3.4. We assume that: 1) a function V {{, z) exists that allows infinitesimal high
limits and takes positive values for a certain =i, > 0 in any small neighbourhood =z =20,
whose derivative V' (¢ z) > W (¢, z) >> 0 by virtue of (1.1); 2} a limit pair of functions (@g, @)
exists such that the set {@, (£, £} = 0} contains no solutions of the system 2z = @ (¢, ) except
z = 0. Then the zeroth scolution of (l.l) is unstable.

For any arbitrary sequence f, -~ - oo and a number ¢ we denote by N (¢ ¢) the set of
points x of the domain I' for each of which a subsequence — 4 oo exists such that lim V (¢ +
t, 2y =c as I —»-+ oo.
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Theorem 3.5. We assume that: 1) a function V (!, %) exists which takes positive values
for a certain ¢t=1,>0 in any small neighbourhocod of &« = 0, which is bounded in the domain
V {t, 2) > 0, whose derivative V' {,2) > W (¢ z) >0 by virtue of {1.1): 2) a seguence f, —»}
o0 exists for which the limit set N ({f ¢) and the limit pair (g, @,) are such that for any
¢ >0 the set N{t, ¢) [} {w, {f, 2} = 0} contains no solutions of the system " = ¢, ({, z). Then
the zeroth solution of {l.1) is unstable.

The proofs of Theorems 3.4 and 3.5 are modifications of the proofs of Theorems 3.2 and
3.3.

Remark. The conditions imposed on the right side, X (¢ 2), of (l.l) can be weakened to
conditions for the existence of limit systems of integral equations to (1.1) /9/. Conditions
on the function W, 2z} can be weakened in an analogous way.

Theorem 3.1 — 3.5 generalize the theorems on asymptotic stability and instability: for
non-autonomous systems with sign-definite derivative; autonomous systems and non-autohomous
systems with periodic right side in the presence of Liapunov functions with sign-constant
derivative /10-13/. It can be show that the conditions of theorems on the asymptotic stabil-
ity and instability with two Liapunov functions /14, 15/ with respect to the auxiliary
Liapunov function are sufficient for compliance with condition 2) of Theorems 3.1-—3.5.

Example. Consider the motion of a solid of variable mass having a fixed point and kinetic
symmetry when conserving the principal directions, in a homogeneous gravity field under the
effect of resistive forces of the medium

Ap 4 (C — A) qr=mgzy, —ap + Mx, W =T —qvs (3.3)
Ag A4 (4 — C) pr == —mgzyy — b + My, v, =pyy—
Cr' = M,, Vs = ¥ — P¥:

We assume that the components of the moments of the reactive forces M and M, are zero,
the resultant moment M, defines r as a bounded function of time r=r{t, t, ry), the moments of
inertia 4 (t) and C (¥), the body mass m (t) and its coordinates :z({f), the coefficients of the
moments of the resistive forces a(f) and b(), are bounded and satisfy the conditions

AN 2A>0, CMZCo>0, m=m>0 (3.4
2 () <z<0, py ()= (20— A7) mgz + 4 (mgz)” < —p,
pa ()= (2b — A"y mgz + 4 (mgz) < ~py < O
Then the eguations of motion allow non-uniform rotation around the vertical axis of
symmetxy
p=g=0, r=r(t ty,rey V=970, py=1 (3.5)
For the derivative of the function
V= A+ mes) + 72+ w + (L~ VT =T — 0
we have V< —Wi(p, ¢)=—24,(p*+ ¢ <0 by virtue of (3.3).

The eguations that are limiting to the first two equations (3.3), solved for p and g
exist and have the form

pP=h)er+hBOnthi)p
Tk N pr— k(O + R (DG (hy (8) € —hy < 0)

We find from these equations that the solution of the limit equations to (3.3), that lie
in the set {(W{p, gy=0={p=g¢g=0} are only the solutions p=g=0, p, =y, =0, 3,=1. Hence, on
the basis of Theorem 3.3., we conclude that under conditions (3.4) the motion (3.5) is uniformly
asymptotically stable in p, g, %1, 75 vs. It can be shown that for sz(f)>2,>0, Be () > pos Mo (B} > >0
the motion (3.5) will be unstable on the basis of Theorem 3.4.

We note that an analogous problem for a body of constant mass was solved in /14/ by
using two Liapunov functions, different problems on the stability of rotation of a variable-
mass body were first examined in /15/.

4. we consider a mechanical system with time-dependent constraints described by the

Lagrange equations
d ( 6L) L _ o (4.1)
dt \3g / dg '

QT=(917937--vvqu)'L=Lz+L1+L.,
Ly =g At @) ¢, i = BT(g) ¢, Ly = Ly(t, @)

¢=¢@{ ¢ ¢) is the resultant of the generalized gyroscopic and dissipative forces, @7.¢ <
0; 6L/0g=0,Q@ =0 for ¢ =g =0 so that the system has a zeroth equilibrium position

q' =g = ] . (4.2)

We assume L, (¢, 0) = 0, L/8¢ > 0, which is satisfied if for fixed ¢ and g the systemkinetic

energy is a non-decreasing, and the potential energy a non-increasing function of t. Then for
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the derivative of the function ILg— Ly, we have

(Ly — Loy = — dL/ot + QT-q" < QT-¢' (4.3)

We also assume that the quantities A4 (¢, q), d4/0T, 04/8q, 3B/6q,d8L/dg, @ are bounded and
satisfy the Lipschitz condition in all their variables. Then the limit systems of equations
to (4.l1) exist and have the form

AL+ {(@)Cug} + (DU} + Fo = Qu (4.4)
where {(¢")TC,q’}, {DIg’} are sets of n quadratic and n linear forms, respectively, the elements

of the matrices A,, {C.}, Do} Fy, @, are limiting for corresponding elements from (4.1), in
particular '

. aL
Folt,g)= zliﬂl& 3; -+t q) (4.5)
n

Theorem 4.1. We assume that L, ({f, ¢) <0, the dissipative forces are partial dissipa-
tion forces, QT.¢<— a{lqg )X {a(a)>0 for a=0, |lglly is the norm in R¥ in the first k

coordinates) . Then each bounded motion (4.1) approaches the connected subset of the set MrC
{9 =¢q = ...=¢q =0} invariantly with respect to the solution of the limit systems (4.4). If
the dissipative forces are forces of total dissipation @T.¢" < — & (|| ¢l}), then each bounded motion
(4.1) approaches the connected subset of the sets of equilibrium positions of all systems (4.4) with~
out limit, i.e., the sets of points ¢ defined by the equalities

‘lﬁ%’-@n«}‘t,q)so Ot +o0)

On the basis of Theorem 2.2 the proofs follow from relations (4.3), the structure of the limits
systems (4.4) to {4.1) and equations (4.5).

Theorem 4.2. We assume that: 1) the function V = — Ly (¢, q) is positive-definite; 2)
the equilibrium position (4.2) is a non-degenerate isolated position, i.e., {0LJ/dqll == fo (I ¢’ 1)
(fo(@) =0¢>a = 0); 3) dissipative forces are forces of total dissipation QT.¢’ < —a (¢ []).

Then the equilibrium position (4.2) is uniformly asymptotically stable.

Proof. Because of the boundedness of A4 (2, g), 8Le/¢ and condition 1) of the theorem, the
function ILg — L, is positive~definite, allows of infinitesimal high limits in ¢ and g, and
by virtue of (4.3) there will be {(Ly— Loy < —a (jg'IH < 0.

From the structure of the limit system (4.4) we have that its every solution lying in

the set {a(ldi) =0}={g'  =¢ =...=4¢, =0} is the solution ¢ == const, defined by the
equalities F_(f, ¢ =0. But it follows from (4.5) and condition 2) of the theorem that
F,{t,g)=04&¢g=0, i.e., that solution can only be zero. We have the result required on the
basis of Theorem 3.3.

The following result can be obtained by a medification of the proof executed on the basis
of Theorems 3.3. and 3.2.

Theorem 4.3. Under conditions 1) and 2) of the previous theorem let us also have 3)

QT-¢ <—BMalldD<0 where B()>0, B(f)>Po>0 for &Ity ta+vl for a certain
sequence £, -~ -+ oo such that Iny — &, < p = const, and a certain number v >0. Then (4.2} is
uniformly asymptotically stable. If B{)>0, B{t) >B,>0 for telt,, ¢, + vl for a certain
divergent sequence I, -»- 00 (i.e., the condition fny ~ & <P 1s not satisfied) and v >0,
then (4.2) is uniformly asymptotically stable in {(ge o).

We note that this result cannot be obtained on the basis of theorems from /2/.

Theorem 4.4. We assume that: 1) the function Lg (¢, ¢) has no maximum at the point ¢ =10
for a certain ¢ =13>0;2) the equilibrium position ¢ =0 is a non-degenerate isolated
position, i.e., [{8L/dgli>>fo Wql) >0 (fo(a) = 0& a =0); 3) the dissipative forces are such
that QTg < —B M alldNB®H>0 BM>B >0 for tEt, ta+ VL ta > + o0, v>0).

Then the equilibrium position (4.2) is unstable.

Theorem 4.5. We assume that: 1) the function L,(f, g) has no maximum at the point g==10
for a certain ¢ =1t,2>0;2) a sequence f, -+ co and a number v >0 exist for which for
any number >0 a 8 =8 (g) >0 exists such that for all t& [f, & + vl in the set {Lo (2, @) =
e} the inequality |} 8Le/8g}l>>8; 3) the dissipative forces are such that g —Pp@Walliglh
for teslty, t, + vl

Then (4.2) is unstable.

The proofs of Theorems 4.4 and 4.5 follow from (4.3)—{4.5) and Theorems 3.4 and 3.5.

Remark. Theorems 4.2—4.5 can be extended to the case of dissipative forces with partial
dissipation. For instance, Theorem 4.2 remains valid if the following conditions are satis-
fied instead of 2} and 3): 2) QT.¢ < —a{ig’ly) and 3) there are no solutions of any limit
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system (4.2) in the set (@' =gq = ...= ¢ = 0} except ¢ =g¢=0.
The theorems proved generalize the results for autonomous /11, 16—18/ and non-autonomous
/3, 14/ mechanical systems obtained by using several Liapunov functions.

5. Consider the problem of synthesizing the control moment assuring the asymptotic stabil-~
ity of a given triaxial orientation of a solid with variable moments of inertia.
Let O:fnl be the inertial, and Oryz the rigidly connected coordinate systems of a solid
body. The rotational motion of the body can be described by the Euler dynamical eguations
(TeY + @ X Jo = M, @ = (0., 0, 0,), M = (M., M,, M) (5.1)

(I (t) is the inertia tensor in the Ozyz axes, defined by a bounded, positive-definite matrix)
and the kinematic equations in Rodrigue-Hamilton parameters /19/
2N = A o 0, A = (Ao, M, Ag, Ay} (5.2)
When the bases (hinl and Ozyz coincide, we have A = (1,0,0, 0).
The problem of synthesizing the control moment assuring uniform asymptotic stability of
the equilibrium position © =0, A = (1,0, 0, 0)is solved in the form
= — R(f) @— ah, AT = (A1, Ay, Ag), 2> 0 (5.3)

Here R (#) is a bounded matrix selected from the condition that 2R(f)-+ I'(y) is a posi-
tive-definite matrix.

The function V=01 (1) 0 + 20 (1 — Ae)® + AP + g? + h?)
is positive-definite, allows infinitesimal high limits, and has a derivative V = —oT 2R 4+ 1)
@ < —By0® (B > 0). because of (5.1})—(5.3). The limit equations to (5.1) and (5.3), solved for

@, will have the form - _
o = {oT4, () 0} + (@78, (0} — aC, (}

where {0740}, {n)TB*) are guadratic and linear forms in wy, @y, @ det{{C, ) > ¥ > 0. The equilibrium
position w=10, A= (+1,0,0,0) are the unique solutions of these equations and (5.2) in the

set {wy= wy = w, =0}, Hence, on the basis of Theorem 3.3, any motion of the body under the
influence of the control (5.3) will approach unboundedly to cne of the equilibrium peositions

®=0,A=(+1, 0, 0, 0). The problem of synthesizing the moment assuring uniform asymptotic stability of
the position e =0, A = (x4, 0, 0, 0}, thereby extending the results of /20/ to a body with variable
moments of inertia, can also be solved by a method analogous to that given here.

The author is grateful to V.V. Rumiantsev for his interest and for discussing the results.
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THE MOTION OF A HEAVY SYMMETRICAL BODY WITH FLEXIBLE RODS
ABOUT A FIXED POINT

V.G. VIL'KE

The motion of a symmetrical solid about its centre of mass is considered
in the case, when four mutually orthogonal flexible rods are fixed to it
in the equatorial plane of the body ellipsoid of inertia. The deformations
of rods is defined by the linear theory of the bending of thin viscoelastic
rods, and lead to the evolution of the motion of the solid, i.e. the solid
approaches steady rotation about the vertical. the approximate equations
in Andoyer variables that define the system evolution are obtained by the
method of averaging. The stability of the steady rotations obtained is

investigated.
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rods attached to it was investigated in /1, 2/. It was shown in /3/ that the longitudinal
deformations of elastic rods fixed to aheavy symmetrical solid rotating about a fixed point
results in the body approaching a steady rotation about the vertical axis. In that paper an
approximate equation was also obtained, which defined the evolution of motion in terms of the
Andoyer variables by the method of averaging.

Let Ay = Bi sk €y, where (41, Bi, €1 are the principal central mements of inertia of the
solid about the point O (the centre of mass of the body), and let two paris of elastic rods
be positioned along the principal axes of the ellipsoid of inertia Oz; and Oz, . Using the
linear theory of the bending of thin rectilinear rods, we determine the radius vector of a
point of the rod in the system of coordinates Oziz,z, in the form

Ry ==se; + Uy ==5€; + U1z (s, t) @ -+ ty5(s, 1) &g
Rp==sey + s == sy (5, £} €1 + s€q + Ly (5, 1) €5
se=K=[—b,a}ll]{a, b

The kinetic energy and angular momentum of the system are defined by the relations

T =%(Jm, o) -+ “:‘ZS [(w x R)+RPpds

=l K

G=Jw+ Y {[Rix (@ xR+ R)pds

tei K

where @ (@, @5 ®;*) is the angular velocity of rotation of the body,J: is the inertia tensor
of the body, and p is the linear density of the rod material, which is assumed homogeneous.
The angular velocity and the inertia tensor are considered in the moving system of coordinates
Oz12,24.

The position of the moving coordinate system relative to the fixed system Ol (the
axis O, is vertical} is defined by Euler's angles. The generalized momenta and Routh's
functional are defined by the relations
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